It’s time to get serious about recycling lithium-ion batteries | Forum

Topic location: Forum home » General » General Chat
xysoom
xysoom Jul 26 '19
As the popularity of electric vehicles starts to grow explosively, so does the pile of spent lithium-ion batteries that once powered those cars. Industry analysts predict that by 2020, China alone will generate some 500,000 metric tons of used Li-ion batteries and that by 2030, the worldwide number will hit 2 million metric tons per year.cheap Lithium battery pack
If current trends for handling these spent batteries hold, most of those batteries may end up in landfills even though Li-ion batteries can be recycled. These popular power packs contain valuable metals and other materials that can be recovered, processed, and reused. But very little recycling goes on today. In Australia, for example, only 2–3% of Li-ion batteries are collected and sent offshore for recycling, according to Naomi J. Boxall, an environmental scientist at Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO). The recycling rates in the European Union and the US—less than 5%—aren’t much higher.
“There are many reasons why Li-ion battery recycling is not yet a universally well-established practice,” says Linda L. Gaines of Argonne National Laboratory. A specialist in materials and life-cycle analysis, Gaines says the reasons include technical constraints, economic barriers, logistic issues, and regulatory gaps.
All those issues feed into a classic chicken-and-egg problem. Because the Li-ion battery industry lacks a clear path to large-scale economical recycling, battery researchers and manufacturers have traditionally not focused on improving recyclability. Instead, they have worked to lower costs and increase battery longevity and charge capacity. And because researchers have made only modest progress improving recyclability, relatively few Li-ion batteries end up being recycled.
Most of the batteries that do get recycled undergo a high-temperature melting-and-extraction, or smelting, process similar to ones used in the mining industry. Those operations, which are carried out in large commercial facilities—for example, in Asia, Europe, and Canada—are energy intensive. The plants are also costly to build and operate and require sophisticated equipment to treat harmful emissions generated by the smelting process. And despite the high costs, these plants don’t recover all valuable battery materials.
Until now, most of the effort to improve Li-ion battery recycling has been concentrated in a relatively small number of academic research groups, generally working independently. But things are starting to change. Driven by the enormous quantity of spent Li-ion batteries expected soon from aging electric vehicles and ubiquitous portable electronics, start-up companies are commercializing new battery-recycling technology. And more scientists have started to study the problem, expanding the pool of graduate students and postdocs newly trained in battery recycling. In addition, some battery, manufacturing, and recycling experts have begun forming large, multifaceted collaborations to tackle the impending problem.
Share: